Optimal and Learning Control for

 Autonomous Robots

 Autonomous Robots Lecture 10

Jonas Buchli/ Farbod Farshidian
Agile \& Dexterous Robotics Lab

Buchli - OLCAR - 2013

Reading

- Peters, Jan, and Stefan Schaal. "Reinforcement learning of motor skills with policy gradients."
- Deisenroth, Marc Peter, Gerhard Neumann, and Jan Peters. "A Survey on Policy Search for Robotics." (20|3). [Section 2.2]

Outline

- Natural Gradient
- episodic Natural Actor Critic (eNAC)

Policy Gradient Theorem (PGT)

- Gradient in Policy Gradient Theorem (PGT)

$$
\left.\nabla_{\theta}^{P G T} J(\theta)=E_{p_{\theta}(\tau)} \mid \sum_{t=0}^{T-1} \nabla_{\theta}\left(\log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right)\left(Q_{t}^{\tau}\left(x_{t}, u_{t}\right)-b_{t}\right)\right]
$$

- If $b_{t}=V_{t}^{\pi}\left(x_{t}\right)$

$$
\nabla_{\theta}^{P G T} J(\theta)=E_{p_{\theta}(\tau)}\left[\sum_{t=0}^{T-1} \nabla_{\theta}\left(\log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right)\left(Q_{t}^{\pi}\left(x_{t}, u_{t}\right)-V_{t}^{\pi}\left(x_{t}\right)\right)\right]
$$

Advantage function $\quad A_{t}^{\pi}\left(x_{t}, u_{t}\right)=Q_{t}^{\pi}\left(x_{t}, u_{t}\right)-V_{t}^{\pi}\left(x_{t}\right)$

$$
\left.\nabla_{\theta}^{P G T} J(\theta)=E_{p_{\theta}(\tau)} \mid \sum_{t=0}^{T-1} \nabla_{\theta}\left(\log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right) A_{t}^{\tau}\left(x_{t}, u_{t}\right)\right]
$$

Unbiased estimation of

gradient

- We need to approximate the advantage function

$$
\left.\nabla_{\theta}^{P G T} J(\theta)=E_{p_{0}(\tau)} \mid \sum_{t=0}^{T-1} \nabla_{\theta}\left(\log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right) A_{t}^{\tau}\left(x_{t}, u_{t}\right)\right]
$$

- The approximation is done through function approximation
- This function approximation should not cause bias in the gradient estimation
- But every function approximation has error
- So the error should be orthogonal to the gradient direction

Compatible function approximation

- The function approximation for the advantage function should minimize the expectation of the square error (ESE)

$$
\min _{w} E_{p_{p}}\left\lceil\left(A_{t}^{\pi}\left(x_{t}, u_{t}\right)-f_{w}\left(x_{t}, u_{t}\right)\right)^{2}\right\rceil
$$

- The function approximation is linear with respect to its parameters $f_{w}\left(x_{t}, u_{t}\right)=w^{T} \underbrace{\nabla_{\theta}\left(\log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right)}$

> Base functions are gradient of policy

- w should be found through minimizing the ESE

Buchli - OLCAR - 2013

PGT with compatible function approximation

- Using the function approximation in the PGT gradient while the baseline is taken as value function

$$
\begin{aligned}
& \nabla_{\theta}^{P G T} J(\theta)=G_{\theta} w \\
& G_{\theta}=E_{p_{\theta}(\tau)}\left\lceil\sum_{t=0}^{T} \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right) \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right)^{T}\right]
\end{aligned}
$$

Goals of Natural Gradient

- Avoiding quick decrease in the exploration ability
- keeping the exploitation of the gradient information local

Idea of Natural Gradient

limit the changes of the policy distribution or equivalently the changes of trajectory distribution

Natural Gradient

So the problem statement is:
Find the parameter change which maximize the cost function below while keeping distance between two distributions ε

$$
\begin{aligned}
& \max _{\Delta \theta} J(\theta+\Delta \theta) \approx J(\theta)+\Delta \theta^{\tau} \nabla_{\theta} J \\
& \text { s.t. } \varepsilon=d_{K L}\left(p_{\theta}(\tau) \mathrm{P} p_{\theta+\Delta \theta}(\tau)\right) \approx \frac{1}{2} \Delta \theta^{T} F_{\theta} \Delta \theta
\end{aligned}
$$

$$
F_{\theta}=E_{p_{\theta}(\tau)}\left[\sum_{t=0}^{T} \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right) \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right)^{T}\right]
$$

Natural Policy Gradient

Using PGT gradient in natural gradient format

$$
\left.\left.\begin{array}{l}
\nabla_{\theta}^{N G} J(\theta)=F_{\theta}^{-1} \nabla_{\theta}^{P G} J(\theta) \\
\nabla_{\theta}^{P G T} J(\theta)=G_{\theta} w \\
\text { From PGT } \\
G_{\theta}=E_{p_{\theta}(\tau)}\left[\sum_{t=0}^{T} \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right) \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right)^{T}\right] \\
F_{\theta}=E_{p_{\theta}(\tau)}\left[\sum_{t=0}^{T} \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right) \nabla_{\theta}\left(\log \pi_{\theta}\left(\mathrm{u}_{t} \mid \mathrm{x}_{t}\right)\right)^{T}\right]
\end{array}\right\} F_{\theta}=G_{\theta}\right\} \quad \nabla_{\theta}^{N G} J(\theta)=w
$$

Natural Policy Gradient

 plus
PGT with value function baseline

- Using PGT gradient with value function baseline in natural gradient format yields

$$
\nabla_{\theta}^{N G} J(\theta)=w
$$

- We just need to compute w through minimizing ESE

$$
\min _{w} E_{p_{0}}\left\lceil\left(A_{t}^{\pi}\left(x_{t}, u_{t}\right)-w^{T} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right)^{2}\right\rceil
$$

$$
\begin{aligned}
& \text { Approximating } \\
& \text { advantage function }
\end{aligned}
$$

- To solve ESE, we should have the advantage function of the current policy.

$$
\min _{w} E_{p_{0}}\left\lceil\left(A_{t}^{\pi}\left(x_{t}, u_{t}\right)-w^{T} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)\right)^{2}\right\rceil
$$

- But we don't have the advantage function explicitly

Can we compute an estimation of advantage function?

Advantage function

- From definition of advantage function we have

$$
Q_{t}^{\pi}\left(x_{t}, u_{t}\right)=A_{t}^{\pi}\left(x_{t}, u_{t}\right)+V_{t}^{\pi}\left(x_{t}\right)
$$

- From definition of state-action value function we have

$$
Q_{t}^{\pi}\left(x_{t}, u_{t}\right)=r_{t}\left(x_{t}, u_{t}\right)+\int V_{t+1}^{\pi}\left(x^{\prime}\right) p\left(x^{\prime} \mid x_{t}, u_{t}\right) d x^{\prime}
$$

- Combining these two formulas

$$
A_{t}^{\pi}\left(x_{t}, u_{t}\right)+V_{t}^{\pi}\left(x_{t}\right)=r_{t}\left(x_{t}, u_{t}\right)+\int V_{t+1}^{\pi}\left(x^{\prime}\right) p\left(x^{\prime} \mid x_{t}, u_{t}\right) d x^{\prime}
$$

Advantage function estimation

- We got a Bellman like equation for the advantage function:

$$
A_{t}^{\pi}\left(x_{t}, u_{t}\right)+V_{t}^{\pi}\left(x_{t}\right)=r_{t}\left(x_{t}, u_{t}\right)+\int V_{t+1}^{\pi}\left(x^{\prime}\right) p\left(x^{\prime} \mid x_{t}, u_{t}\right) d x^{\prime}
$$

- For the samples derived form rollout, we can write

Rollout: the trajectory of state and actions yields from execution of policy in the environment

$$
\tau: x_{0}, u_{0}, x_{1}, u_{1}, \ldots, x_{t}, u_{t}, x_{t+1}, u_{t+1}, \ldots, x_{H-1}, u_{H-1}, x_{H}
$$

episodic Natural Actor Critic (eNAC)

- Use the estimated advantage function in each time step and sum them up

$$
\begin{aligned}
& \tilde{A}_{0}^{\pi}\left(x_{0}, u_{0}\right)+\tilde{V}_{0}^{\pi}\left(x_{0}\right)=r_{0}\left(x_{0}, u_{0}\right)+\tilde{V}^{\pi}\left(x_{1}\right)+\varepsilon_{0} \\
& \tilde{A}_{1}^{\pi}\left(x_{1}, u_{1}\right)+\tilde{K}_{1}^{\pi}\left(x_{1}\right)=r_{1}\left(x_{1}, u_{1}\right)+\tilde{K}_{2}^{\tilde{J}}\left(x_{2}\right)+\varepsilon_{1} \\
& + \\
& \tilde{A}_{t}^{\pi}\left(x_{t}, u_{t}\right)+\tilde{H}_{t}^{\pi}\left(x_{t}\right)=r_{t}\left(x_{t}, u_{t}\right)+\tilde{V}^{\pi}\left(x_{t+1}\right)+\varepsilon_{t} \\
& \tilde{A}_{t+1}^{\pi}\left(x_{t+1}, u_{t+1}\right)+\tilde{V}_{f t}^{\pi}\left(x_{t+1}\right)=r_{t+1}\left(x_{t+1}, u_{t+1}\right)+\tilde{V}_{d+2}^{\pi}\left(x_{t+2}\right)+\varepsilon_{t+1} \\
& \vdots \\
& \tilde{A}_{T-1}^{\pi}\left(x_{T}, u_{T}\right)+\tilde{V}_{\lambda}^{\pi}\left(x_{T}\right)=r_{T}\left(x_{T}\right)+\varepsilon_{T} \\
& \sum_{t=0}^{T-1} \tilde{A}_{t}^{\pi}\left(x_{t}, u_{t}\right)+\tilde{V}_{0}^{\pi}\left(x_{0}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t}
\end{aligned}
$$

Continued

- Using function approximation for advantage function

$$
\sum_{t=0}^{T-1} \tilde{A}_{t}^{\pi}\left(x_{t}, u_{t}\right)+\tilde{V}_{0}^{\pi}\left(x_{t}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t} \quad \quad \tilde{A}_{t}^{\pi}\left(x_{t}, u_{t}\right) \approx w^{T} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)
$$

$$
\begin{aligned}
& \sum_{t=0}^{T-1} w^{T} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)+\tilde{V}_{0}^{\pi}\left(x_{0}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t} \\
& w^{T} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)+\tilde{V}_{0}^{\pi}\left(x_{0}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t}
\end{aligned}
$$

Continued

- Now what about the value function for initial time

$$
w^{T} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)-\tilde{V}_{0}^{\pi}\left(x_{0}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t}
$$

- We need to approximate the initial value function as well

$$
\tilde{V}_{0}^{\pi}\left(x_{0}\right) \approx v^{T} \varphi\left(x_{0}\right)
$$

- If the agent is always initialized in a specific state, the base function is simply one and v is accumulated reward of the trajectory
- If the agent is initialized in random states, the base function should be a function of state vector

Continued

- Using function approximation for value function

$$
w^{T} \sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right)+v^{T} \varphi\left(x_{0}\right)=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t}
$$

- In the vector form we can write

$$
\left[\begin{array}{l}
w \\
v
\end{array}\right]\left[\begin{array}{c}
T
\end{array}\left[\begin{array}{c}
\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right) \\
\varphi\left(x_{0}\right)
\end{array}\right]=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)+\sum_{t=0}^{T} \varepsilon_{t}\right.
$$

- To abbreviate the notation

$$
\left[\begin{array}{l}
w \\
v
\end{array}\right]^{T}\left[\begin{array}{c}
\phi \\
\varphi\left(x_{0}\right)
\end{array}\right]=R+\varepsilon^{\swarrow} \begin{gathered}
\text { Estror of } \\
\text { Approximation }
\end{gathered} \quad R=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right)
$$

acc. reward

$$
\begin{aligned}
& \phi=\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t} \mid x_{t}\right) \\
& R=\sum_{t=0}^{T} r_{t}\left(x_{t}, u_{t}\right) \\
& \varepsilon=\sum_{t=0}^{T} \varepsilon_{t} \text { Zürich }
\end{aligned}
$$

eNAC Algorithm

- To reduce the error, we should use information from several rollouts (say N rollouts)

$$
\begin{gathered}
{\left[\begin{array}{cc}
\phi^{1^{T}} & \varphi\left(x_{0}^{1}\right)^{T}
\end{array}\right]\left[\begin{array}{c}
w \\
v
\end{array}\right]=R^{1}+\varepsilon^{1}} \\
\vdots \\
{\left[\begin{array}{cc}
\phi^{i^{T}} & \varphi\left(x_{0}^{i}\right)^{T}
\end{array}\right]\left[\begin{array}{c}
w \\
v
\end{array}\right]=R^{i}+\varepsilon^{i}} \\
\vdots \\
{\left[\begin{array}{ll}
\phi^{N^{T}} & \varphi\left(x_{0}^{N}\right)^{T}
\end{array}\right]\left[\begin{array}{l}
w \\
v
\end{array}\right]=R^{N}+\varepsilon^{N}}
\end{gathered}
$$

Use Least Square methods
to estimate the
parameter vector

eNAC algorithm

- Using the least square method over N rollouts, we will have

$$
\Psi=\left[\begin{array}{c}
\Phi^{1^{T}} \\
\vdots \\
\Phi^{N^{T}}
\end{array}\right], \quad \Phi^{i}=\left[\begin{array}{c}
\sum_{t=0}^{T-1} \nabla_{\theta} \log \pi_{\theta}\left(u_{t}^{i} \mid x_{t}^{i}\right) \\
\varphi\left(x_{0}^{i}\right)
\end{array}\right] \quad R=\left[\begin{array}{c}
R^{1} \\
\vdots \\
R^{N}
\end{array}\right], \quad R^{i}=\sum_{t=0}^{T} r_{t}\left(x_{t}^{i}, u_{t}^{i}\right)
$$

$$
\left[\begin{array}{l}
w \\
v
\end{array}\right]=\left(\Psi^{T} \Psi\right)^{-1} \Psi^{T} R
$$

Buchli - OLCAR - 2013

```
Algorithm Episodic Natural Actor Critic
    Input: Policy parametrization \(\boldsymbol{\theta}\),
        data-set \(\mathcal{D}=\left\{x_{1: T}^{[i]}, \boldsymbol{u}_{1: T-1}^{[i]}, r_{1: T}^{[i]}\right\}_{i=1 \ldots N}\)
    for each sample \(i=1 \ldots N\) do
        Compute returns: \(R^{[i]}=\sum_{t=0}^{T} r_{t}^{[i]}\)
            Compute features: \(\boldsymbol{\psi}^{[i]}=\left[\begin{array}{c}\sum_{t=0}^{T-1} \nabla_{\boldsymbol{\theta}} \log \pi_{\boldsymbol{\theta}}\left(\boldsymbol{u}_{t}^{[i]} \mid x_{t}^{[i]}, t\right) \\ \boldsymbol{\varphi}\left(\boldsymbol{x}_{0}^{[i]}\right)\end{array}\right]\)
    end for
```

Fit advantage function and initial value function

$$
\begin{gathered}
\boldsymbol{R}=\left[R^{[1]}, \ldots, R^{[N]}\right]^{T}, \quad \boldsymbol{\Psi}=\left[\boldsymbol{\psi}^{[1]}, \ldots, \boldsymbol{\psi}^{[N]}\right]^{T} \\
{\left[\begin{array}{c}
\boldsymbol{w} \\
\boldsymbol{v}
\end{array}\right]=\left(\boldsymbol{\Psi}^{T} \boldsymbol{\Psi}\right)^{-1} \boldsymbol{\Psi}^{T} \boldsymbol{R}}
\end{gathered}
$$

return $\nabla_{\boldsymbol{\theta}}^{\mathrm{eNAC}} J_{\boldsymbol{\theta}}=\boldsymbol{w}$

Buchli - OLCAR - 2013

Credits

material from:

Reinforcement Learning of motor skill with policy gradients

A Survey on Policy Search for Robotics

Optimal and Learning Control for Autonomous Robots Lecture IO

Exercise 3

online until end of week!

Office hour

No office hour this week!

Next week, two office hours: Thu I3h-I5, 17:30-I8:30

Next week's lecture RL Recap

Reading

There is no book!

Learning variable impedance control. Buchli, Stulp,Theodorou, Schaal, IJRR 30(7), 820-33

Outline

Natural Gradient
Natural Actor Critic

Path Integral Stochastic Optimal Control Policy Improvements with Path Integrals

eNAC

Avoid calculating explicit gradient?

Idea: Modify current best guess for optimal controls Pick best seen outcome as new best guess

- This works both as global, one step algorithm
- and local, iterative algorithm
- one step algorithms run into curse of dimensionality, iterative work in practice but give local optimum
- No need for step-size! Complete update step extracted from data!

Stochastic optimal control

$$
\begin{aligned}
& R\left(\tau_{i}\right)=\phi_{t_{N}}+ \int_{t_{i}}^{t_{N}} r_{t} d t \\
& r_{t}=r\left(\mathbf{x}_{t}, \mathbf{u}_{t}, t\right)=q_{t}+\frac{1}{2} \mathbf{u}_{t}^{T} \mathbf{R} \mathbf{u}_{t} \\
& \mathrm{q} \text { arbitrary function of } \mathrm{x}, \mathrm{t}(\text { but not u) }
\end{aligned}
$$

state dependent input gain matrix
nonlinear system dynamics
Linear in controls and noise

$$
\dot{\mathbf{x}}_{t}=\mathbf{f}\left(\mathbf{x}_{t}, t\right)+\mathbf{G}\left(\mathbf{x}_{t}\right)\left(\mathbf{u}_{t}+\varepsilon_{t}\right)
$$

Noise: meanfree, gaussian

Lecture 3: LQR

$$
\begin{array}{rr}
V=\frac{1}{2} \Delta \mathbf{x}^{T}\left(t_{f}\right) \phi_{\mathbf{x x}}\left(t_{f}\right) \Delta \mathbf{x}\left(t_{f}\right) & \text { quadratic cost } \\
+\frac{1}{2} \int_{t_{0}}^{t_{t}}\left\{\left[\Delta \mathbf{x}^{T}(t) \Delta \mathbf{u}^{T}(t)\right]\left[\begin{array}{cc}
\mathbf{Q}(t) & \mathbf{M}(t) \\
\mathbf{M}^{T}(t) & \mathbf{R}(t)
\end{array}\right]\left[\begin{array}{c}
\Delta \mathbf{x}(t) \\
\Delta \mathbf{u}(t)
\end{array}\right]\right. \\
& \text { linear dynamics }
\end{array}
$$

$$
\Delta \dot{\mathbf{x}}(t)=\mathbf{F}(t) \Delta \mathbf{x}(t)+\mathbf{G}(t) \Delta \mathbf{u}(t)
$$

HJB equation

Buchli - OLCAR - 2013

Solving Quadkatic HJB Equation

LHS

∂V^{*} $\frac{\partial}{\partial t}\left[\Delta \mathrm{x}^{*}(t), t\right]$

10
$\frac{1}{2} \Delta \mathbf{x}^{* T}(t) \dot{P}(t) \Delta \mathbf{x}^{*}(t)$

Find Value Function and Optimal Controls

Find right side of HJB:
(I) by partial derivative with respect to controls and setting it to 0
(2) Use partial derivative of Quadratic Ansatz to substitute partial derivative of V in respect tox-
(3) solve in this expression for u: yields u^{*} (optimal control!)
(4) substitute u^{*} back into HJB, solve for unknownmatrix P

$$
V\left(x_{t}\right)=\min _{u_{t}} E_{\tau}[R(\tau)]
$$

$\int p(\tau) R(\tau) d \tau \quad \int p(\tau)\left(\frac{1}{\lambda} \phi+\frac{1}{\lambda} \int r d t\right) d \tau$
Discretize and use EM-like idea: PoWER Problem: pseudo-probability - restriction on cost function

Other idea:Treat probability as a diffusion process - Connection with statistical physics Forward dynamics! Sampling (Monte Carlo)!

Derivation of stochastic HJB

Stochastic principle of optimality

Principle of optimality

$$
V^{*}\left(t_{1}\right)=E\left\{\phi\left[\mathbf{x}^{*}\left(t_{f}\right), t_{f}\right]-\int_{t_{f}}^{t_{1}} \mathscr{L}\left[\mathbf{x}^{*}(t), \mathbf{u}^{*}(t), t\right] d t\right\}
$$

Total time derivative:

$$
\frac{d V^{*}\left(t_{1}\right)}{d t}=-E\left\{\mathscr{L}\left[\mathbf{x}^{*}\left(t_{1}\right), \mathbf{u}^{*}\left(t_{1}\right), t_{1}\right]\right\}
$$

Measurements are deterministic

$$
\frac{d V^{*}\left(t_{1}\right)}{d t}=-\mathscr{L}\left[\mathbf{x}^{*}\left(t_{1}\right), \mathbf{u}^{*}\left(t_{1}\right), t_{1}\right]
$$

[St] p 422/23

Can also write total time derivative as Taylor Series

$$
\begin{aligned}
\frac{d V^{*}}{d t} \Delta t & =E\left\{\frac{\partial V^{*}}{\partial t} \Delta t+\frac{\partial V^{*}}{\partial \mathbf{x}} \dot{\mathbf{x}} \Delta t+\frac{1}{2}\left[\dot{\mathbf{x}}^{T} \frac{\partial^{2} V^{*}}{\partial \mathbf{x}^{2}} \dot{\mathbf{x}}\right] \Delta t^{2}+\cdots\right\} \\
& =E\left[V_{t}^{*} \Delta t+V_{\mathbf{x}}^{*}(\mathbf{f}+\mathbf{L w}) \Delta t+\frac{1}{2}(\mathbf{f}+\mathbb{L} \mathbf{w})^{T} V_{\mathbf{x x}}^{*}(\mathbf{f}+\mathbf{L w}) \Delta t^{2}\right]
\end{aligned}
$$

Functions of $\mathbf{x}(t)$ equal their own expectations, and $E[\mathbf{w}(t)]=\mathbf{0}$. Dividing by
Δt, and replacing the third term by its trace, the time derivative is

$$
\begin{aligned}
\frac{d V^{*}}{d t} & =V_{t}^{*}+V_{\mathbf{x}}^{*} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left\{E\left[(\mathbf{f}+\mathbb{L} \mathbf{w})^{T} V_{\mathbf{x x}}^{*}(\mathbf{f}+\mathbb{L} w)\right] \Delta t\right\} \\
& =V_{t}^{*}+V_{\mathbf{x}}^{*} \mathfrak{f}+\frac{1}{2} \operatorname{Tr}\left\{E\left[V_{\mathbf{x x}}^{*}(\mathbf{f}+\mathbb{L} \mathbf{w})(\mathbf{f}+\mathbb{L} \mathbf{w})^{T}\right] \Delta t\right\}
\end{aligned}
$$

Stochastic HJB

f, w uncorrelated

$$
\begin{aligned}
\frac{d V^{*}}{d t} & =V_{1}^{*}+V_{\mathbf{x}}^{*} \mathbf{f}+\frac{1}{2} \lim _{\Delta t \rightarrow 0} \operatorname{Tr}\left\{V_{\mathbf{x x}}^{*}\left[E\left(\mathbf{f i f}^{T}\right) \Delta t+\mathbb{L} E\left(\mathbf{w w} \mathbf{w}^{T}\right) \mathbf{L}^{T} \Delta t\right]\right\} \\
& =V_{1}^{*}+V_{\mathbf{x}}^{*} \mathbf{f}+\frac{1}{2} \operatorname{Tr}\left(V_{\mathbf{x x}}^{*} \mathbb{L} \mathbf{W} \mathbf{L}^{T}\right)
\end{aligned}
$$

plug in and rearrange

$$
\begin{aligned}
V_{t}^{*}(t)= & -\min _{\mathbf{u}}\left\{\mathscr { L } \left[\left(\mathbf{x}^{*}(t), \mathbf{u}(t), t\right]+V_{\mathbf{x}}^{*} \mathrm{f}\left[\mathbf{x}^{*}(t), \mathbf{u}(t), t\right]\right.\right. \\
& \left.+\frac{1}{2} \operatorname{Tr}\left[V_{\mathbf{x x}}^{*} \mathbb{L}(t) \mathbf{W}(t) \mathbf{L}^{T}(t)\right]\right\}
\end{aligned}
$$

Terminal condition:
starting value for evaluation of $V^{*}(t)$ is $E\left\{\phi\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]\right\}$, which is $\phi\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]$ because $\mathbf{x}\left(t_{f}\right)$ can be measured without error.

nonlinear HJB

$$
-\partial_{t} V_{t}=\min _{\mathbf{u}}\left(r_{t}+\left(\nabla_{\mathbf{x}} V_{t}\right)^{T} \mathbf{F}_{t}+\frac{1}{2} \operatorname{trace}\left(\left(\nabla_{\mathbf{x x}} V_{t}\right) \mathbf{G}_{t} \Sigma_{\varepsilon} \mathbf{G}_{t}^{T}\right)\right)
$$

(1) gradient of RHS $=0$ yields $\mathbf{F}_{t}=\mathbf{f}\left(\mathbf{x}_{t}, t\right)+\mathbf{G}\left(\mathbf{x}_{t}\right) \mathbf{u}_{t}$

$$
\mathbf{u}\left(\mathbf{x}_{t}\right)=\mathbf{u}_{t}=-\mathbf{R}^{-1} \mathbf{G}_{t}^{T}\left(\nabla_{x_{t}} V_{t}\right)
$$

(4) substitute opt. control back into $\mathrm{HJB} \Rightarrow$
$-\partial_{t} V_{t}=q_{t}+\left(\nabla_{\mathbf{x}} V_{t}\right)^{T} \mathbf{f}_{t}-\frac{1}{2}\left(\nabla_{\mathbf{x}} V_{t}\right)^{T} \mathbf{G}_{t} \mathbf{R}^{-1} \mathbf{G}_{t}^{T}\left(\nabla_{\mathbf{x}} V_{t}\right)+\frac{1}{2} \operatorname{trace}\left(\left(\nabla_{\mathbf{x x}} V_{t}\right) \mathbf{G}_{t} \Sigma_{\varepsilon} \mathbf{G}_{t}^{T}\right)$
Nonlinear PDE!

log transform

$$
\begin{array}{r}
-\partial_{t} V_{t}=q_{t}+\left(\nabla_{\mathbf{x}} V_{t}\right)^{T} \mathbf{f}_{t}-\frac{1}{2}\left(\nabla_{\mathbf{x}} V_{t}\right)^{T} \mathbf{G}_{t} \mathbf{R}^{-1} \mathbf{G}_{t}^{T}\left(\nabla_{\mathbf{x}} V_{t}\right)+\frac{1}{2} \operatorname{trace}\left(\left(\nabla_{\mathbf{x x}} V_{t}\right) \mathbf{G}_{t} \Sigma_{\varepsilon} \mathbf{G}_{t}^{T}\right) \\
\text { Nonlinear PDE! }
\end{array}
$$

$$
V_{t}=-\lambda \log \Psi_{t}
$$

$$
\Rightarrow\left\{\begin{array}{c}
\partial_{t} V_{t}=-\lambda \frac{1}{\Psi_{t}} \partial_{t} \Psi_{t}, \\
\nabla_{\mathbf{x}} V_{t}=-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x}} \Psi_{t}, \\
\nabla_{\mathbf{x x}} V_{t}=\lambda \frac{1}{\Psi_{t}^{2}} \nabla_{\mathbf{x}} \Psi_{t} \nabla_{\mathbf{x}} \Psi_{t}^{T}-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x x}} \Psi t \\
\hline
\end{array}\right.
$$

$$
\begin{aligned}
& \frac{\lambda}{\Psi_{t}} \partial_{t} \Psi_{t}=q_{t}-\frac{\lambda}{\Psi_{t}}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)^{T} \mathbf{f}_{t}-\frac{\lambda^{2}}{\frac{2 \Psi_{t}^{2}}{2}}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)^{T} \mathbf{G}_{t} \mathbf{R}^{-1} \mathbf{G}_{t}^{T}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)+\frac{1}{2} \operatorname{trace}(\Gamma) \\
& \qquad=\left(\lambda \frac{1}{\Psi_{t}^{2}} \nabla_{\mathbf{x}} \Psi_{t} \nabla_{\mathbf{x}} \Psi_{t}^{T}-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x x}} \Psi_{t}\right) \mathbf{G}_{t} \Sigma_{\varepsilon} \mathbf{G}_{t}^{T} \\
& \text { R L } \quad \text { Buchli - OLCAR - } 2013
\end{aligned}
$$

structure of control cost

 linked to noise$$
\begin{array}{r}
\frac{\lambda}{\Psi_{t}} \partial_{t} \Psi_{t}=q_{t}-\frac{\lambda}{\Psi_{t}}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)^{T} \mathbf{f}_{t}-\frac{\lambda^{2}}{\frac{2 \Psi_{t}^{2}}{}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)^{T} \mathbf{G}_{t} \mathbf{R}^{-1} \mathbf{G}_{t}^{T}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)}+\frac{1}{2} \operatorname{trace}(\Gamma) \\
\Gamma=\left(\lambda \frac{1}{\Psi_{t}^{2}} \nabla_{\mathbf{x}} \Psi_{t} \nabla_{\mathbf{x}} \Psi_{t}^{T}-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x x}} \Psi_{t}\right) \mathbf{G}_{t} \Sigma_{\boldsymbol{\varepsilon}} \mathbf{G}_{t}^{T}
\end{array}
$$

$$
\operatorname{trace}(\Gamma)=\lambda \frac{1}{\Psi^{2}} \operatorname{trace}\left(\nabla_{\mathbf{x}} \Psi_{t}^{T} \mathbf{G}_{t} \Sigma_{\boldsymbol{\varepsilon}} \mathbf{G}_{t} \nabla_{\mathbf{x}} \Psi_{t}\right)-\lambda \frac{1}{\Psi_{t}} \operatorname{trace}\left(\nabla_{\mathbf{x x}} \Psi_{t} \mathbf{G}_{t} \Sigma_{\boldsymbol{\varepsilon}} \mathbf{G}_{t}^{T}\right)
$$

$\lambda \mathbf{R}^{-1}=\Sigma_{\boldsymbol{\varepsilon}} \quad \lambda \mathbf{G}_{t} \mathbf{R}^{-1} \mathbf{G}_{t}^{T}=\mathbf{G}_{t} \Sigma_{\mathcal{E}} \mathbf{G}_{t}^{T}=\Sigma\left(\mathbf{x}_{t}\right)=\Sigma_{t}$

$$
-\partial_{t} \Psi_{t}=-\frac{1}{\lambda} q_{t} \Psi_{t}+\mathbf{f}_{t}^{T}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)+\frac{1}{2} \operatorname{trace}\left(\left(\nabla_{\mathbf{x x}} \Psi_{t}\right) \mathbf{G}_{t} \Sigma_{\mathcal{E}} \mathbf{G}_{t}^{T}\right)
$$

linear!

$$
\begin{aligned}
& \text { linear HJB } \\
& -\partial_{t} \Psi_{t}=-\frac{1}{\lambda} q_{t} \Psi_{t}+\mathbf{f}_{t}^{T}\left(\nabla_{\mathbf{x}} \Psi_{t}\right)+\frac{1}{2} \operatorname{trace}\left(\left(\nabla_{\mathbf{x x}} \Psi_{t}\right) \mathbf{G}_{t} \Sigma_{\mathcal{E}} \mathbf{G}_{t}^{T}\right)
\end{aligned}
$$

linear, but still no analytic solution for arbitrary $q(x, t)$

$$
\text { solve backward } \quad \text { terminal condition : } \Psi_{t_{N}}=\exp \left(-\frac{1}{\lambda} \phi_{t_{N}}\right)
$$

Feynman-Kac Theorem: Can write solution of PDE as
Expectation over stochastic forward dynamics

$$
\left.\begin{array}{rl}
\Psi_{t_{i}}=E \tau_{i}\left(\Psi_{t T_{N}} e^{-\int_{t_{i}^{\prime}}^{N} \frac{1}{\lambda} q_{i} d t}\right)= & E \tau_{\tau_{i}}[
\end{array} \exp \left(-\frac{1}{\lambda} \phi_{t_{N}}-\frac{1}{\lambda} \int_{t_{i}}^{t_{N}} q_{t} d t\right)\right] \quad \text { forward! } \quad . . \text { but stochastic }
$$

Remember the forward search in the discrete ADRL state, discrete time problem (Lect. 2)

Expectations over paths

$$
\Psi_{t_{i}}=E \tau_{i}\left(\Psi_{t_{N}} e^{-\int_{i_{i}^{T}}^{T_{\lambda}} q_{t} d t}\right)=E \tau_{i}\left[\exp \left(-\frac{1}{\lambda} \phi_{t_{N}}-\frac{1}{\lambda} \int_{t_{i}}^{t_{N}} q_{t} d t\right)\right]
$$

forward!
... but stochastic $\int p(\tau) \exp \left(-\frac{1}{\lambda} \phi-\frac{1}{\lambda} \int q d t\right) d \tau$

$$
\tau=x\left(t \ldots t_{N}\right) \sim p(x, u)
$$

an instance of a random path segment (a random 'number', but in spaces of functions)

$$
E[X]=\int x p(x) d x
$$

Continuous time, x is function of time

$$
x=f(t)
$$

Major difficulty: Definition of stochastic processes in continuous time!

Continuous Random Processes
 $d \mathbf{x}=\mathbf{f}(\mathbf{x}, \mathbf{u}) d t+F(\mathbf{x}, \mathbf{u}) d \boldsymbol{\omega}$

'paths diffuse over time'
'density'

Continuous decision

processes

Take random walk and take limits
$d x \rightarrow 0$
probability densities $d t \rightarrow 0$
probability flow
for all times $\int p(x) d x=1$ conservation law!

Conserved flow?
 You know how to do that!

EMHzürich

Comparison to graphs

 can think of all possibilities of a random walk as graph

When does
'branching' occur?
Idea: do discrete time and take limit

There are several ways to end up in a certain state, each path has an associated probability

E/Hzürich

Probabilistic Dynamics

Discrete time: Markov chains

Master Equation
Continuous time:
Jumps: Continuous-time Markov chain
Smooth: Markov Process
Fokker-Planck
cf. (Heat) Diffusion
EMHzürich

Fokker-Planck Equation

(the most interesting equation in the world?)

$$
\begin{aligned}
& \frac{\partial}{\partial t} p(x, t)=-\frac{\partial}{\partial x}[\mu(x, t) p(x, t)]+\frac{\partial^{2}}{\partial x^{2}}[D(x, t) p(x, t)] \\
& \text { Drift } \\
& d X_{t}=d W_{t} \text { brownian motion, no drift } \\
& \frac{\partial p(x, t)}{\partial x}=\frac{1}{2} \frac{\partial^{2} p(x, t)}{\partial x^{2}} \\
& \Rightarrow p(x, t)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t}} \\
& \text { cf. Flusion } \\
& \text { Heat Dynamics } \\
& \text { cf. Particle filters }
\end{aligned}
$$

Stochastic Control

‘Controlled Diffusion’

Controlled Brownian Motion

OPTIMAL CONTROL AND ESTIMATION

Robert F. Stengel

Example

High dimensional continuous state actions spaces with stochastic dynamics

Optimal(?) control in fluids

Approach: Computational Fluid dynamics \&
Evolutionary Algorithm

$V_{t}=-\lambda \log \Psi_{t}$

$$
\begin{gathered}
\Psi_{t_{i}}=E \tau_{i}\left(\Psi_{t_{N}} e^{-\int_{t_{i}}^{t_{N}} \frac{1}{\lambda} q_{t} d t}\right)=E \tau_{i}\left[\exp \left(-\frac{1}{\lambda} \phi_{t_{N}}-\frac{1}{\lambda} \int_{t_{i}}^{t_{N}} q_{t} d t\right)\right] \\
\int p(\tau) \exp \left(-\frac{1}{\lambda} \phi-\frac{1}{\lambda} \int q d t\right) d \tau
\end{gathered}
$$

discretize

$$
\tau_{i}=\left(\mathbf{x}_{t_{i}}, \mathbf{x}_{t_{i+1}}, \ldots ., \mathbf{x}_{t_{N}}\right) \quad d \tau_{i}=\left(d \mathbf{x}_{t_{i}}, \ldots ., d \mathbf{x}_{t_{N}}\right)
$$

path starting at t_i to end of episode
'how much does it cost'?

$$
\Psi_{t_{i}}=\lim _{d t \rightarrow 0} \int p\left(\tau_{i} \mid \mathbf{x}_{i}\right) \exp \left[-\frac{1}{\lambda}\left(\phi_{t_{N}}+\sum_{j=i}^{N-1} q_{t_{j}} d t\right)\right] d \tau_{i}
$$

'where do i end up next?'
integrate ('sum') over all possible $p\left(\tau_{i} \mid \mathbf{x}_{i}\right) ? ? ?$ paths:'path integral'

SПH zürich

$$
\begin{aligned}
p\left(\tau_{i} \mid \mathbf{x}_{t_{i}}\right) & =p\left(\tau_{i+1} \mid \mathbf{x}_{t_{i}}\right) \\
& =p\left(\mathbf{x}_{t_{N}}, \ldots, ., \mathbf{x}_{t_{i+1}} \mid \mathbf{x}_{t_{1}}\right) \\
& =\prod_{j=i}^{N-1} p\left(\mathbf{x}_{t_{j+1} \mid} \mid \mathbf{x}_{t_{j}}\right),
\end{aligned}
$$

Gaussian noise leads to

$$
\begin{aligned}
& p\left(\mathbf{x}_{t_{j+1}}^{(c)} \mid \mathbf{x}_{t_{j}}\right)=\frac{1}{\left((2 \pi)^{l} \cdot\left|\Sigma_{t_{j}}\right|\right)^{1 / 2}} \exp \left(-\frac{1}{2}\left\|\mathbf{x}_{t_{j+1}}^{(c)}-\mathbf{x}_{t_{j}}^{(c)}-\mathbf{f}_{t_{j}}^{(c)} d t\right\|_{\Sigma_{t_{j}}^{-1}}^{2}\right) \\
& \text { 'deviation from deterministic } \\
& \Psi_{t_{i}}=\lim _{d t \rightarrow 0} \int \exp \left(-\frac{1}{\lambda} S\left(\tau_{i}\right)-\log D\left(\tau_{i}\right)\right) d \tau_{i}^{(c)} \\
& =\lim _{d t \rightarrow 0} \int \exp \left(-\frac{1}{\lambda} Z\left(\tau_{i}\right)\right) d \tau_{i}^{(c)}, \\
& \text { dynamics' } \\
& S\left(\tau_{i}\right)=\phi_{t_{N}}+\sum_{j=i}^{N-1} q_{t_{j}} d t+\frac{1}{2} \sum_{j=i}^{N-1}\left\|\frac{\mathbf{x}_{t_{j+1}}^{(c)}-\mathbf{x}_{t_{j}}^{(c)}}{d t}-\mathbf{f}_{t_{j}}^{(c)}\right\|_{\mathbf{H}_{j}}{ }^{2} \text { 'effect of noise variance’ } \\
& D\left(\tau_{i}\right)=\Pi_{j=i}^{N-1}\left((2 \pi)^{l / 2}\left|\Sigma_{t_{j}}\right|^{1 / 2}\right) \text { 'normalization with noise variance' }
\end{aligned}
$$

Illustration

[Psi at t_i]

Buchli - OLCAR - 2013

$V_{t}=-\lambda \log \Psi_{t}$

$$
\begin{gathered}
\partial_{t} V_{t}=-\lambda \frac{1}{\Psi_{t}} \partial_{t} \Psi_{t}, \\
\nabla_{\mathbf{x}} V_{t}=-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x}} \Psi_{t},
\end{gathered}
$$

$\nabla_{\mathbf{x x}} V_{t}=\lambda \frac{1}{\Psi_{t}^{2}} \nabla_{\mathbf{x}} \Psi_{t} \nabla_{\mathbf{x}} \Psi_{t}^{T}-\lambda \frac{1}{\Psi_{t}} \nabla_{\mathbf{x x}} \Psi_{t}$

$$
\mathbf{u}_{t_{i}}=-\mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{T}\left(\nabla_{x_{i}} V_{t_{i}}\right)
$$

$$
\Rightarrow \quad \mathbf{u}_{t_{i}}=\lambda \mathbf{R}^{-1} \mathbf{G}_{t_{i}} \frac{\nabla_{\mathbf{x}_{i}} \Psi_{t_{i}}}{\Psi_{t_{i}}}
$$

Plug in Ψ

$$
\mathbf{t}_{t}\left(\lim _{d t \rightarrow 0}\left(\lambda \mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{T} \frac{\nabla_{\mathbf{x}_{i i}}^{(c)}}{\left.\int e^{-\frac{1}{\lambda} \tilde{S}\left(\tau_{i}\right)} d \tau_{i}^{-\frac{1}{\lambda} \tilde{s}\left(\tau_{i}\right)} d \tau_{i}^{(c)}\right)}\right)\right.
$$

$$
\mathbf{u}_{t_{i}}=\int P\left(\tau_{i}\right) \mathbf{u}_{L}\left(\tau_{i}\right) d \tau_{i}^{(c)}
$$

$$
\mathbf{u}_{L}\left(\tau_{i}\right)=-\mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{(c) T} \lim _{d t \rightarrow 0}\left(\nabla_{\mathbf{x}_{t_{i}}^{(c)}} \tilde{S}\left(\tau_{i}\right)\right)
$$

$$
P\left(\tau_{i}\right)=\frac{\left.e^{-\frac{1}{\lambda} \bar{s} \bar{s}} \tau_{i}\right)}{\int e^{-\frac{1}{\lambda} \bar{s}\left(\tau_{i}\right)} d \tau_{i}}
$$

AD R L

$$
\mathbf{u}_{L}\left(\tau_{i}\right)=\mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{(c)} T\left(\mathbf{G}_{t_{i}}^{(c)} \mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{(c)} T\right)^{-1} \mathbf{G}_{t_{i}}^{(c)} \varepsilon_{t_{i}}
$$

'project noise in range space of control gain' - weighted with control cost R Buchli - OLCAR - 2013

Example: Naive sampling

$$
\begin{align*}
& M(\theta) \cdot \ddot{\theta}+C(\theta, \dot{\theta})=\tau \\
& \ddot{\theta}=M(\theta)^{-1} \cdot(-C(\theta, \dot{\theta})+\tau) \tag{38}
\end{align*}
$$

$$
\begin{align*}
M(\theta) & =\left(\begin{array}{cc}
d_{1}+2 d_{2} \cos \left(\theta_{2}\right) & d_{3}+d_{2} \cos \left(\theta_{2}\right) \\
d_{3}+d_{2} \cos \left(\theta_{2}\right) & d_{3}
\end{array}\right)(37) \\
C(\dot{\theta}, \theta) & =\binom{-\dot{\theta}_{2}\left(2 \dot{\theta}_{1}+\dot{\theta}_{2}\right)}{\dot{\theta}_{1}^{2}} d_{2} \sin \left(\theta_{2}\right) \\
d_{1} & =I_{1}+I_{2}+m_{2} l_{1}^{2}, \quad d_{2}=m_{2} l_{1} s_{2}, \quad d_{3}=I_{2} \tag{39}
\end{align*}
$$

Symbol	Value	Unit
m_{1}	1.4	Kg
m_{2}	1	Kg
s_{1}	0.11	m
s_{2}	0.16	m
I_{1}	0.3	Kg m
I_{2}	0.33	Kg m
l_{1}	0.025	m
l_{2}	0.045	m

$$
\begin{gathered}
\dot{x}=\Phi(x)+G(x) \cdot \tau \\
x=\left(\begin{array}{lll}
\theta_{1} & \theta_{2} & \dot{\theta}_{1} \dot{\theta}_{2}
\end{array}\right)^{T} \tau=\left(\begin{array}{ll}
\tau_{1} & \tau_{2}
\end{array}\right) \\
\Phi(x)=\left(\begin{array}{c}
\dot{\theta}_{1} \\
\dot{\theta}_{2} \\
-M(\theta)^{-1} \cdot C(\theta, \dot{\theta})
\end{array}\right), G(x)=\binom{o_{2 \times 2}}{M(\theta)^{-1}}
\end{gathered}
$$

Path integral SOC requires sampling of passive dynamics with gaussian mean-free noise逄 $A R L$

Improved sampling...?

 $\tau_{u}^{i}=M(\theta) \cdot\left(\alpha_{i}+\epsilon_{i}\right)+C(\theta, \dot{\theta})$ $M(\theta) \cdot \ddot{\theta}+C(\theta, \dot{\theta})=\tau_{u}$
Sample in

 acceleration space, use inverse dynamics controllers to find torques:... still not very efficient (curse of $\theta_{2}{ }_{2}$ [rad] $\quad 0.35$ dimensionality still strikes, needle in a ADRL haystack!)

From Model based to Model-free PISOC

$$
\mathbf{u}_{t_{i}}=\int P\left(\tau_{i}\right) \mathbf{u}_{L}\left(\tau_{i}\right) d \tau_{i}^{(c)}
$$

$$
P\left(\tau_{i}\right)=\frac{e^{-\frac{1}{\lambda} \tilde{s}\left(\tau_{i}\right)}}{\int e^{-\frac{1}{\lambda} \tilde{S}\left(\tau_{i}\right)} d \tau_{i}}
$$

$$
\mathbf{u}_{L}\left(\tau_{i}\right)=\mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{(c)} T\left(\mathbf{G}_{t_{i}}^{(c)} \mathbf{R}^{-1} \mathbf{G}_{t_{i}}^{(c)} T\right)^{-1} \mathbf{G}_{t_{i}}^{(c)} \varepsilon_{t_{i}}
$$

Optimal control need model: Input Gain matrix
Good sampling: need model, input gain matrix

Policy improvements with Path Integrals - PI2

I)Local sampling, iterative method
2) Use an 'intermediate system' with known input gain matrix: parametrized policies!
parameters

Path integral SOC with

 parameterized policy$$
\begin{gathered}
\mathbf{a}_{t_{i}}=\mathbf{g}_{t_{i}}^{T}\left(\boldsymbol{\theta}+\boldsymbol{\varepsilon}_{t_{i}}\right) \\
\mathbf{u}_{t_{i}}=\int P\left(\tau_{i}\right) \mathbf{u}_{L}\left(\tau_{i}\right) d \tau_{i}^{(c)} \\
P\left(\tau_{i}\right)=\frac{e^{-\frac{1}{\lambda} \tilde{S}\left(\tau_{i}\right)}}{\int e^{-\frac{1}{\lambda} \tilde{S}\left(\tau_{i}\right)} d \tau_{i}}, \quad \mathbf{u}_{L}\left(\tau_{i}\right)=\frac{\mathbf{R}^{-1} \mathbf{g}_{i_{i}}^{(c)} \mathbf{g}_{t_{i}}^{(c) T}}{\mathbf{g}_{t_{i}}^{(c) T} \mathbf{R}^{-1} \mathbf{g}_{t_{i}}^{(c)}} \varepsilon_{t_{i}}
\end{gathered}
$$

Iterative Path integrals with

Parametrized policies

$$
\mathbf{a}_{t_{i}}=\mathbf{g}_{t_{i}}^{T}\left(\theta+\varepsilon_{t_{i}}\right)
$$

$$
\begin{aligned}
& \mathbf{u}_{t_{i}}=\int P\left(\tau_{i}\right) \mathbf{u}_{L}\left(\tau_{i}\right) d \tau_{i}^{(c)} \\
& P\left(\tau_{i}\right)=\frac{e^{-\frac{1}{\lambda} \tilde{\delta}\left(\tau_{i}\right)}}{\int e^{-\frac{1}{\lambda} \tilde{S}\left(\tau_{i}\right)} d \tau_{i}}, \quad \mathbf{u}_{L}\left(\tau_{i}\right)=\frac{\mathbf{R}^{-1} \mathbf{g}_{t_{i}}^{(c)} \mathbf{g}_{i}^{(c) T}}{\mathbf{g}_{t_{i}}^{(c) T} \mathbf{R}^{-1} \mathbf{g}_{t_{i}}^{(c)}} \varepsilon_{t_{i}}
\end{aligned}
$$

$$
\tilde{S}\left(\tau_{i}\right)=\phi_{t_{\mathrm{N}}}+\sum_{j=i}^{N-1} q_{t_{j}}+\frac{1}{2} \sum_{j=i}^{N-1} \varepsilon_{i j}^{T} \mathbf{M}_{i_{j}}^{T} \mathbf{R M}_{t_{j}} \varepsilon_{\tau_{j}}
$$

$$
\begin{aligned}
\theta_{t_{i}}^{(\text {new })} & =\int P\left(\tau_{i}\right) \frac{\mathbf{R}^{-1} \mathbf{g}_{t_{i}} \mathbf{g}_{t_{i}}{ }^{T}\left(\theta+\varepsilon_{t_{i}}\right)}{\mathbf{g}_{t_{i}}^{T} \mathbf{R}^{-1} \mathbf{g}_{t_{i}}} d \tau_{i} \\
& =\int P\left(\tau_{i}\right) \frac{\mathbf{R}^{-1} \mathbf{g}_{t_{i}} \mathbf{g}_{t_{i}}{ }^{T} \varepsilon_{t_{i}}}{\mathbf{g}_{t_{i}}{ }^{T} \mathbf{R}^{-1} \mathbf{g}_{t_{i}}} d \tau_{i}+\frac{\mathbf{R}^{-1} \mathbf{g}_{t_{i}} \mathbf{g}_{t_{i}}{ }^{T} \theta}{\mathbf{g}_{t_{i}}{ }^{2} \mathbf{R}^{-1} \mathbf{g}_{t_{i}}} \\
& =\delta \theta_{t_{i}}+\frac{\mathbf{R}^{-1} \mathbf{g}_{t_{i}} \mathbf{g}_{t_{i}}^{T}}{\operatorname{trace}\left(\mathbf{R}^{-1} \mathbf{g}_{t_{i}} \mathbf{g}_{i} T\right)} \theta \\
& =\delta \theta_{t_{i}}+\mathbf{M}_{t_{i}} \theta .
\end{aligned}
$$

$$
\mathbf{M}_{t_{j}}=\frac{\mathbf{R}^{-1} \mathbf{g}_{t_{j}} \mathbf{g}_{j}^{T}}{\mathbf{g}_{j j}^{T} \mathbf{R}^{-1} \mathrm{~g}_{\mathrm{g}_{j}}}
$$

Compare to DDP

Pl^{2}

Update step

$$
\begin{align*}
P\left(\tau_{i}\right) & =\frac{e^{-\frac{1}{\lambda} S\left(\tau_{i}\right)}}{\int e^{-\frac{1}{\lambda} S\left(\tau_{i}\right)} d \tau_{i}} \tag{35}\\
S\left(\tau_{i}\right) & =\phi_{t_{N}}+\sum_{j=i}^{N-1} q_{t_{j}} d t+\frac{1}{2} \sum_{j=i}^{N-1}\left(\theta+\mathbf{M}_{t_{j}} \varepsilon_{t_{j}}\right)^{T} \mathbf{R}\left(\theta+\mathbf{M}_{t_{j}} \varepsilon_{t_{j}}\right) d t \tag{36}\\
\delta \theta_{t_{i}} & =\int P\left(\tau_{i}\right) \mathbf{M}_{t_{i}} \varepsilon_{t_{i}} d \tau_{i} \tag{37}\\
{[\delta \theta]_{j} } & =\frac{\sum_{i=0}^{N-1}(N-i) w_{j, t_{i}}\left[\delta \theta_{t_{i}}\right]_{j}}{\sum_{i=0}^{N-1} w_{j, t_{i}}(N-i)} \tag{38}\\
\theta^{(n e w)} & =\theta^{(\text {old })}+\delta \theta
\end{align*}
$$

Fig. 2. Overview of the PI^{2} algorithm.

Pl^{2}

Policy Improvement with Path Integrals

- Given:
- An immediate cost function $r_{t}=q_{t}+\theta_{t}^{T} \mathbf{R} \theta_{t}$ (cf. 1)
- A terminal cost term $\phi_{t_{N}}$ (cf. 1)
- A stochastic parameterized policy $\mathbf{a}_{t}=\mathbf{g}_{t}^{T}\left(\theta+\varepsilon_{t}\right)$ (cf. 25)
- The basis function $g_{t_{i}}$ from the system dynamics (cf. 3 and Section 2.5.1)
- The variance Σ_{ε} of the mean-zero noise ε_{t}
- The initial parameter vector θ

Fig. 2. Overview of the PI^{2} algorithm.

- Repeat until convergence of the trajectory cost R :
- Create K roll-outs of the system from the same start state \mathbf{x}_{0} using stochstic parameters $\theta+\varepsilon_{t}$ at every time step
- For $k=1 \ldots K$, compute:
* $P\left(\tau_{i, k}\right)=\frac{e^{-\frac{1}{\lambda} s\left(\tau_{i, k}\right)}}{\sum_{k=1}^{K}\left[e^{-\frac{1}{\lambda} s\left(\tau_{i, k}\right)}\right]}$
* $S\left(\tau_{i, k}\right)=\phi_{t_{N}, k}+\sum_{j=i}^{N-1} q_{t_{j}, k}+\frac{1}{2} \sum_{j=i+1}^{N-1}\left(\theta+\mathbf{M}_{t, k} \varepsilon_{t_{j}, k}\right)^{T} \mathbf{R}\left(\theta+\mathbf{M}_{t_{j}, k} \varepsilon_{t_{j}, k}\right)$
$* \mathbf{M}_{t, k}=\frac{\mathbf{R}^{-1} \mathbf{g}_{j, k} \mathbf{g}_{j, k}^{T}}{\mathbf{g}_{i, k}^{T} \mathbf{R}^{-1} \mathbf{g}_{t j, k}}$
- For $i=1 \ldots(N-1)$, compute:
$* \delta \theta_{t_{i}}=\sum_{k=1}^{K}\left[P\left(\tau_{i, k}\right) \mathbf{M}_{t_{i}, k} \varepsilon_{t_{i}, k}\right]$
- Compute $[\delta \theta]_{j}=\frac{\sum_{i=0}^{N-1}(N-i) w_{j t_{i}}\left[\delta \theta_{t_{i}}\right]_{j}}{\sum_{i=0}^{N-1} w_{j, t_{i}}(N-i)}$
- Update $\theta \leftarrow \theta+\delta \theta$
- Create one noiseless roll-out to check the trajectory cost $R=\phi_{t_{N}}+\sum_{i=0}^{N-1} r_{t_{i}}$. In case the noise cannot be turned off, that is, a stochastic system, multiple roll-outs need be averaged.

Simplifications to PI2

$$
\begin{align*}
& S\left(\boldsymbol{\tau}_{i, k}\right)=\phi_{t_{N}, k}+\sum_{j=i}^{N-1} r_{t_{j}, k}+ \\
& \underbrace{\frac{1}{2}} \sum_{j=i+1}^{N-1}\left(\boldsymbol{\theta}+\mathbf{M}_{t_{j}, k} \boldsymbol{\epsilon}^{\boldsymbol{\theta}}{ }_{t_{j}, k}\right)^{T} \mathbf{R}\left(\boldsymbol{\theta}+\mathbf{M}_{t_{j}, k} \boldsymbol{\epsilon}_{\boldsymbol{\theta}_{j}, k}\right) \tag{7}\\
& \mathbf{M}_{t_{j}, k}=\frac{\mathbf{R}^{-1} \mathbf{g}_{t_{j}} \mathbf{g}_{t_{j}}^{T}}{\mathbf{g}_{t_{j}}^{T} \mathbf{R}^{-1} \mathbf{g}_{t_{j}}} \tag{8}\\
& P\left(\boldsymbol{\tau}_{i, k}\right)=\frac{e^{-\frac{1}{\lambda} S\left(\boldsymbol{\tau}_{i, k}\right)}}{\sum_{l=1}^{K}\left[e^{-\frac{1}{\lambda} S\left(\boldsymbol{\tau}_{i, l}\right)}\right]} \tag{9}\\
& \delta \boldsymbol{\theta}_{t_{i}}=\sum_{k=1}^{K}\left[P\left(\boldsymbol{\tau}_{i, k}\right) \boldsymbol{M}_{t_{t_{i}, k}} \boldsymbol{\epsilon}_{\boldsymbol{\theta}_{i}, k}\right] \tag{10}\\
& {[\delta \boldsymbol{\theta}]_{j}=\frac{\sum_{i=0}^{N-1}(N-i) w_{j, t_{i}}}{\sum_{i=0}^{N-1} w_{j, t_{i}}(N-i)}} \tag{11}\\
& \boldsymbol{\theta} \leftarrow \boldsymbol{\theta}+\delta \boldsymbol{\theta} \tag{12}
\end{align*}
$$

Simplifications

$M=I$

Only use total cost to go

$$
\begin{array}{rlr}
P\left(\boldsymbol{\tau}_{0, k}\right) & =\frac{e^{-\frac{1}{\lambda} J\left(\boldsymbol{\tau}_{0, k}\right)}}{\sum_{l=1}^{K}\left[e^{-\frac{1}{\lambda} J\left(\boldsymbol{\tau}_{0, l}\right)}\right]} & \text { Probability } \\
\delta g & =\sum_{k=1}^{K}\left[P\left(\boldsymbol{\tau}_{0, k}\right) \epsilon_{k}^{g}\right] & \text { Weighted averaging } \\
g \leftarrow g+\delta g & \text { Update } \tag{23}
\end{array}
$$

... a few more things

Elitism: Remember overall best few and use in update
Lambda: Use schedule to 'freeze' the system

Credits \& Refs

Path Integral Based Stochastic Optimal Control for Rigid Body Dynamics E.A.Theodorou, J. Buchli and S. Schaal

A Generalized Path Integral Control Approach to Reinforcement Learning. Evangelos A.Theodorou, Jonas Buchli, Stefan Schaal

Learning Motion Primitive Goals for Robust Manipulation
Freek Stulp, Evangelos Theodorou, Mrinal Kalakrishnan, Peter Pastor, Ludovic Righetti, Stefan Schaal

Feynman Lectures on Physics

EOF L7

Buchli - OLCAR - 2013

